<listing id="hnjf1"></listing>
<pre id="hnjf1"></pre>

<p id="hnjf1"><output id="hnjf1"><menuitem id="hnjf1"></menuitem></output></p>

<p id="hnjf1"><output id="hnjf1"><delect id="hnjf1"></delect></output></p>
<pre id="hnjf1"></pre>

<noframes id="hnjf1">

<p id="hnjf1"><output id="hnjf1"></output></p>
<pre id="hnjf1"><p id="hnjf1"><delect id="hnjf1"></delect></p></pre><p id="hnjf1"><output id="hnjf1"></output></p>

<p id="hnjf1"></p>

6月3日 George F. Seelinger 教授学术报告(数学与统计学院)


报 告 人:George F. Seelinger 教授

报告题目:Vector Space Partitions





  George F. Seelinger,美国伊利诺伊州立大学数学系教授,系主任。 1985年毕业于麻省理工学院,1991年于得克萨斯大学奥斯汀分校获得博士学位。研究方向为代数和环论。已发表多篇学术论文,包括 《Journal of Algebra》 和《Discrete Mathematics》。


  Let F be a field and let V be a finite-dimensional F-vector space. We say P is a vector space partition of V if P is a collection of nonzero subspaces of V such that (1) ∪ U∈PU = V and (2) if U and U′ are distinct subspaces of V, then U ∩ U′ = {0}. When F is a finite field, this gives a way to construct error-correcting codes. The main question is to classify all such vector space partitions for a given vector space V. In this talk, we will consider the case when F is a finite field of characteristic 2 and discuss various constructions of such partitions. We will also introduce multi-fold partitions and state some interesting questions in this context.

联 系 人:丁维勇